- ENGLER, E. M., LEE, V. Y., NAZZAL, A. I., BEYERS, R. B., LIM, G., GRANT, P. M., PARKIN, S. S. P., RAMIREZ, M. L., VAZQUEZ, J. W. & SAVOY, R. J. (1987). J. Am. Chem. Soc. 109, 2848–2849.
- FRENZ, B. A. (1978). Computing in Crystallography, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI, pp. 64-71. Delft Univ. Press.
- HAZEN, R. M., FINGER, L. W., ANGEL, R. J., PREWITT, C. T., ROSS, N. L., MAO, H. K., HADIDIACOS, C. G., HOR, P. H., MENG, R. L. & CHU, C. W. (1987). *Phys. Rev. B*, pp. 7238-7241.
- HINKS, D. G., SODERHOLM, L., CAPONE, D. W. II, JORGENSEN, J. D., SCHULLER, I. K., SEGRE, C. U., ZHANG, K. & GRACE, J. D. (1987). Appl. Phys. Lett. Submitted.
- HOR, P. H., GAO, L., HUANG, Z. J., WANG, Y. Q., FORSTER, K., VASSILIOUS, J., CHU, C. W., WU, M. K., ASHBURN, J. R. & TORNG, C. J. (1987). *Phys. Rev. Lett.* 58, 911–912.
- HUHEEY, J. E. (1972). Inorganic Chemistry: Principles of Structure and Reactivity. New York: Harper & Row.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- Acta Cryst. (1988). C44, 6-8

MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

MICHEL, C. & RAVEAU, B. (1980). J. Solid State Chem. 43, 73-80.

- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*78. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- SMITH, K. D. & HOLOMANY, M. (1980). A FORTRAN IV Program for Calculating X-ray Powder Diffraction Patterns. Pennsylvania State Univ., USA.
- SUN, J. Z., WEBB, D. J., NAITO, N., CHAR, K., HAHN, M. R., HSU, J. W. P., KENT, A. D., MITZI, D. B., OH, B., BEASLEY, M. R., BEBALLE, T. H., HAMMOND, R. H. & KAPITULNIK, A. (1987). *Phys. Rev. Lett.* 58, 1574–1576.
- WOLD, A. (1987). Private communication to K. S. WHEELOCK.
- WU, M. K., ASHBURN, J. R., TORNG, C. J., HOR, P. H., MENG, R. L., GAO, L., HUANG, Z. J., WANG, H. Q. & CHU, C. W. (1987). *Phys. Rev. Lett.* 58, 908–910.

Structure de NdH $(PO_3H)_2.2H_2O$

PAR M. LOUKILI

Ecole Normale Supérieure, Département Chimie, BP, 34A, Fès, Maroc

J. DURAND ET L. COT

Laboratoire de Physicochimie des Matériaux (UA 407), ENSCM, 8 rue de l'Ecole Normale, 34075 Montpellier CEDEX, France

ET M. RAFIQ

Laboratoire de Chimie Minérale, Faculté des Sciences, Fès, Maroc

(Reçu le 16 février 1987, accepté le 8 septembre 1987)

Abstract. $M_r = 341\cdot 2$, orthorhombic, $P2_12_12_1$, $a = 6\cdot6840$ (9), $b = 16\cdot503$ (4), $c = 7\cdot053$ (3) Å, $V = 778\cdot0$ (6) Å³, Z = 4, $D_m = 2\cdot88$ (1), $D_x = 2\cdot906$ Mg m⁻³, λ (Mo Ka) = 0.71069 Å, μ (Mo Ka) = 7\cdot14 mm⁻¹, F(000) = 644, T = 293 K, R = 0.031 for 362 independent reflexions. The structure contains two phosphite anions connected by a weak hydrogen bond. The Nd³⁺ cation is eight-coordinated by seven phosphite anion O atoms and one water O atom.

Introduction. Le phosphite de néodyme $NdH(PO_3H)_{2}$ -2H₂O appartient à une nouvelle famille de composés dans laquelle le néodyme peut être substitué par La, Ce, Pr, Sm, Eu ou Gd. Toutes ces phases sont isostructurales.

Quelques phosphites alcalins: $Na_2PO_3H.5H_2O$ (Colton & Henn, 1971), $(NH_4)_2PO_3H.H_2O$ (Rafiq, Durand & Cot, 1982), alcalino-terreux: MgPO_3H.6H_2O (Corbridge, 1956), Ca(HPO_3H)_2.H_2O (Larbot, Durand & Cot, 1984), et de métaux de transition divalents:

0108-2701/88/010006-03\$03.00

 $CuPO_3H.2H_2O$ (Handlovic, 1969) et $Cd(H_2PO_3)_2$.- H_2O (Loub, Podlahova & Jecny, 1978) ont fait l'objet de déterminations structurales.

Les seules études concernant les métaux trivalents sont relatives à la préparation et l'analyse par spectroscopie d'absorption infra-rouge (Muck & Petru, 1971; Ebert & Kavan, 1978) ou la caractérisation cristallographique (Larbot, Battou, Durand & Cot, 1982) des phases mises en évidence.

L'étude structurale du composé $NdH(PO_3H)_2.2H_2O$ a pour but de mieux connaître l'arrangement type de la famille des phosphites des éléments de terre rare de formule générale $MH(PO_3H)_2.2H_2O$.

Partie expérimentale. Les cristaux en forme de fines aiguilles sont obtenus par évaporation lente d'une solution obtenue par dissolution de Ln_2O_3 dans un excés d'acide phosphoreux H_2PO_3H (Loukili, Rafiq, Durand & Cot, 1987). Les premiers cristaux qui apparaissent correspondent à la phase monoclinique

© 1988 International Union of Crystallography

LnH(PO₃H)₂.1.5H₂O; ils évoluent ensuite vers la phase triclinique Ln(HPO₃H)₃.H₂O (Larbot *et al.*, 1982). Si l'évolution se poursuit, la phase finale que l'on obtient de structure orthorhombique correspond à la formule LnH(PO₃H)₂.2H₂O (Ln = La, Ce, Pr, Nd, Sm, Eu ou Gd).

Tableau 1. Paramètres de positions atomiques ($\times 10^4$) et paramètres d'agitation thermique B_{eq} (les écarts types sont entre parenthèses)

Les atomes H(1) et H(2) ne sont pas affinés.

	x	У	Ζ	$B_{\acute{eq}}(\acute{A}^2)$
Nd	1143 (3)	0324 (2)	1663 (4)	0,71 (4)
P(1)	3579 (18)	1708 (5)	4812 (14)	0,9 (2)
P(2)	0804 (10)	5065 (5)	8395 (20)	0,66 (15)
O(11)	1711 (44)	1524 (13)	3730 (40)	1,24 (66)
O(12)	3847 (45)	1152 (13)	6506 (50)	0,66 (41)
O(13)	3486 (50)	2615 (16)	5525 (40)	0,82 (55)
O(21)	2677 (30)	4518 (10)	8398 (52)	0,35 (39)
O(22)	-0592 (30)	4972 (12)	6678 (50)	0,84 (45)
O(23)	5519 (40)	5163 (16)	5199 (44)	0,89 (56)
W(1)	6492 (40)	3408 (16)	0244 (40)	1,23 (56)
W(2)	1717 (40)	3125 (18)	0759 (50)	4,64 (1,12)
H(1)	5190	1720	3590	4
H(2)	1510	5820	8720	4

Fig. 1. Projection de la structure sur le plan x0z.

Fig. 2. Projection parallèle à z montrant les groupements PO_3H^{2-} liés par liaison hydrogène faible pour former un ion $H_3P_2O_6^{3-}$.

Paramètres de maille déterminés par enregistrement en chambre de Weissenberg (symétrie orthorhombique 222 avec extinction systématique h00 pour h impair, 0k0 pour k impair et 00l pour l impair) affinés par la méthode des moindres-carrés à partir du spectre de poudre. Densité mesurée par pycnomètrie dans le benzène à 293 K. Axe d'allongement c. Dimensions du cristal $0.2 \times 0.015 \times 0.015$ mm. Diffractomètre Enraf-Nonius CAD-4. Mesures d'intensité effectuées au minimum d'absorption (mode aiguille) avec balayage $\omega - \theta$; $\theta < 30^{\circ}$; largeur de balayage 1,20°; $0 \le h \le 7$, $0 \leq k \leq 19$, $0 \le l \le 8$; trois réflexions contrôle mesurées toutes les heures; pas de variations d'intensité supérieure à 0,3%; 924 réflexions mesurées; 362 réflexions indépendantes conservées avec $\sigma(I)/I < 0.3$; corrections de Lorentz et de polarisation mais pas d'absorption; structure résolue par la méthode de Patterson tridimensionnelle; affinement des paramètres atomiques (sauf pour les atomes d'hydrogène) par la méthode des moindres carrés basée sur F; facteurs de diffusion atomique de Doyle & Turner (1968) et de Stewart, Davidson & Simpson (1965) pour les atomes d'hydrogène; programme LINUS (Coppens & Hamilton, 1970) jusqu'à R = 0.041; atomes d'hydrogène de PO₃H placés par synthèse différence de Fourier mais non affinés; autres atomes d'hydrogène non observés; cycles finals d'affinement anisotrope pour tous les atomes sauf ceux d'hydrogène; pas de pondération; résidu final de la synthèse différence de Fourier $\rho = 1,2 \text{ e} \text{ Å}^{-3}$; R = final 0,031; calculateur utilisé IBM 3081.

Discussion. Le Tableau 1 rassemble les valeurs des paramètres atomiques de position en fin d'affinement.* Les Figs. 1 et 2 représentent les projections de la structure sur le plan x0z et x0y. Cette structure peut être décrite à partir de deux tétraèdres PO_3H^{2-} reliés par l'hydrogène acide délocalisé. Ces groupements anioniques $H_3P_2O_6^{3-}$ sont reliés entre eux par un réseau de liaisons hydrogène faibles. L'ion Nd³⁺ situé au centre d'un antiprisme à base carré déformé, assure la cohésion de l'édifice.

On observe (Tableau 2*a*) que les distances et angles de liaison dans le groupement PO_3H^{2-} , de symétrie proche de $C_{3\nu}$, sont identiques à ceux rencontrés dans le cas des autres phosphites connus (P–O moyen 1,54 Å et P–H moyen 1,36 Å). Deux groupements PO_3H différents sont reliés entre eux par l'intermédiaire de l'atome d'hydrogène acide. La distance entre les deux atomes d'oxygène est $O(12)\cdots O(23) = 2,87$ Å. Les distances P–H (1,38 et 1,35 Å) sont en accord avec les

^{*} Les listes des facteurs de structure et des paramètres thermiques anisotropes ont été déposés au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 44338: 5 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 2 2HU, Angleterre.

Tableau 2. Distances (Å) et angles intératomiques (°)

(a) Groupements	PO,H						
P(1) = O(11)	149(3)	P(2) = O(21)	1.54 (2)				
P(1) = O(12)	1,52 (3)	P(2) = O(22)	1.54 (3)				
P(1) = O(12)	1,52 (3)	P(2) = O(23)	159 (3)				
P(1) = O(13)	1,38 (3)	P(2) = O(23)	1,35 (3)				
$\mathbf{P}(\mathbf{I}) = \mathbf{H}(\mathbf{I})$	1,30	r(2) - r(2)	1,55				
	O(12)O(23)	2,87 (4)					
O(11)-P(1)-O(1	2) 112 (2)	O(21)-P(2)-O(2	2) 116 (2)				
O(11) - P(1) - O(1)	3) 109 (2)	O(21)-P(2)-O(2	23) 108 (2)				
O(12) - P(1) - O(1)	3) 101 (2)	O(22)-P(2)-O(2	23) 106 (1)				
O(1) - P(1) - H(1)	110	O(21)-P(2)-H(2	2) 105				
O(12) - P(1) - H(1)	Ú 114	O(22)-P(2)-H(2)	2) 116				
O(13)-P(1)-H(1) 102	O(23)-P(2)-H(2	2) 106				
(b) Groupement NdO.							
NdO(21)	2.33 (2)	Nd…O(11)	2,49 (2)				
Nd0(23)	2.39 (3)	$Nd \cdots W(1)$	2.50 (3)				
Nd0(12)	2.44(2)	Nd…O(22)	2.52 (2)				
Nd…O(22)	2.45 (3)	Nd…O(23)	2,60 (3)				
(a) Molécules d'equ							
(c) Molecules a c	$\mathbf{W}(1) = \mathbf{W}(2)$	2 62 (1)					
	$W(1) \cdots W(2)$	2,03(4)	2.01 (4)				
W(1)····O(11)	2,81 (4)	$W(2) \cdots O(21)$	2,91 (4)				
W(1)····O(12)	2,8/(4)	$W(2) \cdots O(12)$	2,97 (4)				
W(1)····O(22)	2,92 (3)						

valeurs déjà trouvées (Loub et al., 1978; Rafiq et al., 1982; Larbot et al., 1984).

L'ion néodyme est au centre d'un antiprisme à base carrée. Cet environnement 8 est constitué par sept atomes d'oxygène de groupements PO_3H^{2-} et l'atome d'oxygène de la molécule d'eau W(1). L'arète $O(22)\cdots$ O(23) est commune entre cet antiprisme et un tétraèdre PO_3H^{2-} . Ce type d'environnement est couramment rencontré avec les éléments des terres rares. Les distances Nd-O sont comprises entre 2,33 et 2,60 Å.

Les molécules d'eau assurent, avec le cation Nd^{3+} , la cohésion de l'édifice structural. Les atomes d'hydrogène de ces molécules n'ont pas été positionnés, et les plus courtes distances $W \cdots O$ ne permettent pas de prédire

les directions de ces liaisons hydrogène (Tableau 2c). On observe pour W(1) une distance très courte W(1)-W(2) = 2,63 Å et trois distances plus longues (entre 2,81 et 2,92 Å) révélatrices d'un réseau complexe de liaisons hydrogène faibles. Pour W(2), mise à part la distance courte $W(1)\cdots W(2)$, deux autres atomes d'oxygène se trouvent à des distances longues 2,97 et 2,91 Å. Ici aussi ces liaisons hydrogène sont faibles.

Cette description est relative au premier phosphite de terre rares mettant en évidence le groupement H_3 - $P_2O_6^{3-}$. La décomposition thermique de ce matériau fait apparaître une seule phase anhydre puis un composé mixte phosphite–pyrophosphite. Ces deux phases restant toutefois monocristallines font l'objet d'études cristallographique et structurale.

Références

- COLTON, R. H. & HENN, D. E. (1971). J. Chem. Soc. A, pp. 1207-1209.
- COPPENS, P. & HAMILTON, W. C. (1970). Acta Cryst. A26, 71–83. CORBRIDGE, D. E. C. (1956). Acta Cryst. 9, 991–994.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390-397.
- EBERT, M. & KAVAN, L. (1978). Czech. Chem. Commun. 44, 2737-2742.
- HANDLOVIC, M. (1969). Acta Cryst. B25, 227-231.
- LARBOT, A., BATTOU, N., DURAND, J. & COT, L. (1982). C. R. Acad. Sci. Sér. B, 294, 1073-1076.
- LARBOT, A., DURAND, J. & COT, L. (1984). Z. Anorg. Allg. Chem. 508, 154–158.
- LOUB, J., PODLAHOVA, J. & JECNY, J. (1978). Acta Cryst. B34, 32-34.
- LOUKILI, M., RAFIQ, M., DURAND, J. & COT, L. (1987). Rev. Chim. Minér. Sous presse.
- MUCK, A. & PETRU, F. (1971). J. Less-Common Met. 24, 473-474.
- RAFIQ, M., DURAND, J. & COT, L. (1982). Z. Anorg. Allg. Chem. 484, 187-194.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1988). C44, 8-11

Preparation and Structure of $Pb_6O(OH)_6(ReO_4)_4$.H₂O

By Cornelia Haag-Bruhl and Hartmut Fuess

Institut für Kristallographie der J.W. Goëthe-Universität, Senckenberganlage 30, D-6000 Frankfurt am Main, Federal Republic of Germany

AND PHILIP LIGHTFOOT AND ANTHONY K. CHEETHAM*

University of Oxford, Chemical Crystallography Laboratory, 9 Parks Road, Oxford OX1 3PD, England

(Received 26 September 1986; accepted 4 August 1987)

Abstract. $M_r = 2380 \cdot 1$, monoclinic, $P2_1/n$, a = 10.489 (2), b = 16.275 (3), c = 14.704 (3) Å, $\beta = 97.15$ (3)°, V = 2490 Å³, Z = 8, $D_x = 12.69$ g cm⁻³,

 $\lambda(Mo K\alpha) = 0.71069 \text{ Å}, \quad \mu = 233.0 \text{ cm}^{-1}, \quad F(000) = 7936, \text{ room temperature}, \quad R = 0.032 \text{ for } 2361 \text{ unique}$ reflections. The structure consists of discrete ReO_4^- tetrahedra and $\text{Pb}_6\text{O}(\text{OH})_6^{4+}$ units. The crystals were synthesized under hydrothermal conditions at 523 K.

* Author to whom correspondence should be addressed.

0108-2701/88/010008-04\$03.00

© 1988 International Union of Crystallography